H. Tanabe, A. Jinguji, A. Takahashi,"Weakly guiding approximation of a three-dimensional waveguide model for extreme ultraviolet lithography simulation (TBA)"Manuscript in preparation.
H. Tanabe, A. Jinguji, A. Takahashi,"Pre-training CNN for fast EUV lithography simulation including M3D effects (TBA)"Manuscript in preparation.
H. Tanabe, A. Jinguji, A. Takahashi,"Accelerating extreme ultravolet lithography simulation with weakly guiding approximation and source position dependent transmission cross coefficient formula"Journal of Micro/Nanopatterning, Mater. Metrol (JM3), (accepted).
H. Tanabe, A. Jinguji, A. Takahashi,"Evaluation of Convolutional Neural Network for Fast Extreme Ultraviolet Lithography Simulation using Imec 3 nm Node Mask Patterns"Journal of Micro/Nanopatterning, Materials, and Metrology, Vol. 22, Issue 2, 024201, June 2023.
T. Senoo, A. Jinguji, R. Kuramochi, H. Nakahara,"A Multilayer Perceptron Training Accelerator using Systolic Array"IEICE Transactions on Information and Systems, Vol. E105-D, No. 12, pp.2048-2056, December 2022.
A. Jinguji, S. Sato, H. Nakahara,"Weight Sparseness for a Feature-Map-Split-CNN Toward Low-Cost Embedded FPGAs"IEICE Transactions on Information and Systems, Vol. E104-D, No. 12, pp. 2040-2047, December 2021.
A. Jinguji, S. Sato, H. Nakahara,"An FPGA Realization of a Random Forest with k-means Clustering using a High-level Synthesis Design"IEICE Transactions on Information and Systems, Vol. E101-D, No. 2, pp. 354-362, February 2018.
国際会議(査読付き)
A. Jinguji, K. Sano,"A Comparative Survey of GPUs and ASICs for AI Acceleration"R-CCS Symposium 2025 (Poster).
A. Jinguji, Collaborators,"A Many-core Architecture for an Ensemble Ternary Neural Network Toward High-Throughput Inference"(TBA)
T. Senoo, R. Kayanoma, A. Jinguji, and H. Nakahara,"A Light-weight Vision Transformer toward Near-Memory Computation on an FPGA"Applied Reconfigurable Computing International Symposium, (ARC 2023), pp. 338-353, September 2023.
H. Tanabe, A. Jinguji, A. Takahashi,"Evaluation of CNN for fast EUV lithography simulation using iN3 logic mask patterns."Proc. SPIE 12495, DTCO and Computational Patterning II, 12495-55, March, 2023.
T. Senoo, A. Jinguji, R. Kuramochi, H. Nakahara,"A Multilayer Perceptron Training Accelerator using Systolic Array"IEEE Asia Pacific Conf. on Circuits and Systems (APCCAS2021), pp. 77-80, Online, November 2021.
Y. Sada, N. Soga, M. Shimoda, A. Jinguji, S. Sato, H. Nakahara,"Fast Monocular Depth Estimation on an FPGA"IEEE International Parallel and Distributed Processing Symposium Workshops (RAW2020), pp. 143-146, Online, May, 2020.
A. Jinguji, S. Sato, H. Nakahara,"Tiny On-Chip Memory Realization of Weight Sparseness Split-CNNs on Low-end FPGAs"IEEE International Symposium on Field-Programmable Custom Computing Machines (FCCM2020), p. 229, Online, May 2020.
H. Nakahara, Q. Zhiqiang, A. Jinguji, W. Luk,"R2CNN: Recurrent Residual Convolutional Neural Network on FPGA"ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA2020), p. 319, Seaside, California, USA, February 2020.
Y. Sada, M. Shimoda, A. Jinguji, H. Nakahara,"A Dataflow Pipelining Architecture for Tile Segmentation with a Sparse MobileNet on an FPGA"International Conference on Field-Programmable Technology (FPT2019), pp. 267-270, Tianjin, China, December 2019.
A. Jinguji, Y. Sada, H. Nakahara,"Real-Time Multi-Pedestrian Detection in Surveillance Camera using FPGA"International Conference on Field-Programmable Logic and Applications (FPL2019), pp. 424-425, Barcelona, Spain, September 2019.
H. Nakahara, Y. Sada, M. Shimoda, K. Sayama, A. Jinguji, S. Sato,"FPGA-based Training Accelerator Utilizing Sparseness of Convolutional Neural Network"International Conference on Field-Programmable Logic and Applications (FPL2019), pp. 180-186, Barcelona, Spain, September 2019.
H. Nakahara, A. Jinguji, M. Shimoda, S. Sato,"An FPGA-based Fine-Tuning Accelerator for a Sparse CNN"ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA2019), p. 186, Seaside, California, USA, February 2019.
A. Jinguji, T. Fujii, S. Sato, H. Nakahara,"An FPGA Realization of OpenPose based on a Sparse Weight Convolutional Neural Network"International Conference on Field-Programmable Technology (FPT2018), pp. 313-316, Naha, Okinawa, Japan, December 2018.
H. Nakahara, A. Jinguji, S. Sato, T. Sasao,"A Random Forest using a Multi-valued Decision Diagram on an FPGA"IEEE International Symposium on Multiple-Valued Logic (ISMVL2017), pp. 266-271, Novi Sad, Serbia, May 2017.
H. Nakahara, A. Jinguji, T. Fujii, S. Sato,"An Acceleration of a Random Forest Classification using Altera SDK for OpenCL"International Conference on Field-Programmable Technology (FPT2016), pp. 285-288, Xian, China, December 2016.