Skip to content
Journals (peer-reviewed)
-
H. Tanabe, A. Jinguji, A. Takahashi,
"Weakly guiding approximation of a three-dimensional waveguide model for extreme ultraviolet lithography simulation (TBA)"
Manuscript in preparation.
-
H. Tanabe, A. Jinguji, A. Takahashi,
"Pre-training CNN for fast EUV lithography simulation including M3D effects (TBA)"
Manuscript in preparation.
-
H. Tanabe, A. Jinguji, A. Takahashi,
"Accelerating extreme ultravolet lithography simulation with weakly guiding approximation and source position dependent transmission cross coefficient formula"
Journal of Micro/Nanopatterning, Mater. Metrol (JM3), (accepted).
-
H. Tanabe, A. Jinguji, A. Takahashi,
"Evaluation of Convolutional Neural Network for Fast Extreme Ultraviolet Lithography Simulation using Imec 3 nm Node Mask Patterns"
Journal of Micro/Nanopatterning, Materials, and Metrology, Vol. 22, Issue 2, 024201, June 2023.
-
T. Senoo, A. Jinguji, R. Kuramochi, H. Nakahara,
"A Multilayer Perceptron Training Accelerator using Systolic Array"
IEICE Transactions on Information and Systems, Vol. E105-D, No. 12, pp.2048-2056, December 2022.
-
A. Jinguji, S. Sato, H. Nakahara,
"Weight Sparseness for a Feature-Map-Split-CNN Toward Low-Cost Embedded FPGAs"
IEICE Transactions on Information and Systems, Vol. E104-D, No. 12, pp. 2040-2047, December 2021.
-
A. Jinguji, S. Sato, H. Nakahara,
"An FPGA Realization of a Random Forest with k-means Clustering using a High-level Synthesis Design"
IEICE Transactions on Information and Systems, Vol. E101-D, No. 2, pp. 354-362, February 2018.
International Conferences (peer-reviewed)
-
A. Jinguji, K. Sano,
"A Comparative Survey of GPUs and ASICs for AI Acceleration"
R-CCS Symposium 2025 (Poster).
-
A. Jinguji, Collaborators,
"A Many-core Architecture for an Ensemble Ternary Neural Network Toward High-Throughput Inference"
(TBA)
-
T. Senoo, R. Kayanoma, A. Jinguji, and H. Nakahara,
"A Light-weight Vision Transformer toward Near-Memory Computation on an FPGA"
Applied Reconfigurable Computing International Symposium, (ARC 2023), pp. 338-353, September 2023.
-
H. Tanabe, A. Jinguji, A. Takahashi,
"Evaluation of CNN for fast EUV lithography simulation using iN3 logic mask patterns."
Proc. SPIE 12495, DTCO and Computational Patterning II, 12495-55, March, 2023.
-
T. Senoo, A. Jinguji, R. Kuramochi, H. Nakahara,
"A Multilayer Perceptron Training Accelerator using Systolic Array"
IEEE Asia Pacific Conf. on Circuits and Systems (APCCAS2021), pp. 77-80, Online, November 2021.
-
Y. Sada, N. Soga, M. Shimoda, A. Jinguji, S. Sato, H. Nakahara,
"Fast Monocular Depth Estimation on an FPGA"
IEEE International Parallel and Distributed Processing Symposium Workshops (RAW2020), pp. 143-146, Online, May, 2020.
-
A. Jinguji, S. Sato, H. Nakahara,
"Tiny On-Chip Memory Realization of Weight Sparseness Split-CNNs on Low-end FPGAs"
IEEE International Symposium on Field-Programmable Custom Computing Machines (FCCM2020), p. 229, Online, May 2020.
-
H. Nakahara, Q. Zhiqiang, A. Jinguji, W. Luk,
"R2CNN: Recurrent Residual Convolutional Neural Network on FPGA"
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA2020), p. 319, Seaside, California, USA, February 2020.
-
Y. Sada, M. Shimoda, A. Jinguji, H. Nakahara,
"A Dataflow Pipelining Architecture for Tile Segmentation with a Sparse MobileNet on an FPGA"
International Conference on Field-Programmable Technology (FPT2019), pp. 267-270, Tianjin, China, December 2019.
-
A. Jinguji, Y. Sada, H. Nakahara,
"Real-Time Multi-Pedestrian Detection in Surveillance Camera using FPGA"
International Conference on Field-Programmable Logic and Applications (FPL2019), pp. 424-425, Barcelona, Spain, September 2019.
-
H. Nakahara, Y. Sada, M. Shimoda, K. Sayama, A. Jinguji, S. Sato,
"FPGA-based Training Accelerator Utilizing Sparseness of Convolutional Neural Network"
International Conference on Field-Programmable Logic and Applications (FPL2019), pp. 180-186, Barcelona, Spain, September 2019.
-
H. Nakahara, A. Jinguji, M. Shimoda, S. Sato,
"An FPGA-based Fine-Tuning Accelerator for a Sparse CNN"
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA2019), p. 186, Seaside, California, USA, February 2019.
-
A. Jinguji, T. Fujii, S. Sato, H. Nakahara,
"An FPGA Realization of OpenPose based on a Sparse Weight Convolutional Neural Network"
International Conference on Field-Programmable Technology (FPT2018), pp. 313-316, Naha, Okinawa, Japan, December 2018.
-
H. Nakahara, A. Jinguji, S. Sato, T. Sasao,
"A Random Forest using a Multi-valued Decision Diagram on an FPGA"
IEEE International Symposium on Multiple-Valued Logic (ISMVL2017), pp. 266-271, Novi Sad, Serbia, May 2017.
-
H. Nakahara, A. Jinguji, T. Fujii, S. Sato,
"An Acceleration of a Random Forest Classification using Altera SDK for OpenCL"
International Conference on Field-Programmable Technology (FPT2016), pp. 285-288, Xian, China, December 2016.
Awards
-
IEICE Technical Committee on Reconfigurable Systems, Young Researcher Award,
"FPGA Implementation of Multi-core Neural Networks via High-level Synthesis"
Institute of Electronics, Information and Communication Engineers, January 2022.
-
Design Gaia Outstanding Poster Presentation Award,
"FPGA Accelerator for Image Recognition Using gMLP"
IEICE Design Gaia Poster Award Selection Committee, December 2021.
-
IEICE Technical Committee on Reconfigurable Systems, Young Researcher Award,
"Feature-Map Separable Convolution for Memory-Efficient FPGA Image Recognition"
Institute of Electronics, Information and Communication Engineers, January 2019.
Research Grants
-
Google Silicon Research Grant, Co-Principal Investigator (Takuya Kojima, Akira Jinguji), FY2024–FY2025 (Reiwa 6–7),
"Sparsity-aware Coarse-grained Reconfigurable Accelerator"
Award total: USD 30,000.
-
KAKENHI Grant-in-Aid for Scientific Research (B), Co-Investigator (Hiroki Nakahara, Akira Jinguji), FY2024–FY2028 (Reiwa 6–10),
"Dedicated Hardware for Binary Vision Transformers"
Award total: JPY 13,000,000.
-
Industry-sponsored collaborative research (NDA),
"April 2023 – March 2024"
Scope and funding confidential under non-disclosure agreement.
-
Tokyo Tech School of Engineering Assistant Professor Incentive Research Fund, Principal Investigator,
"Designing High-efficiency Sparse Matrix Engines for Deep Learning"
Total budget: JPY 550,000, October 2022 – March 2023.
-
Industry-sponsored collaborative research (NDA),
"April 2022 – March 2023"
Scope and funding confidential under non-disclosure agreement.
-
JSPS Research Fellowship (DC1) Grant, Principal Investigator,
"Realizing Fast CNN Systems through Combined Static and Dynamic Pruning"
Total budget: JPY 3,100,000, April 2020 – March 2022.